A RESEARCH NOTE ON THE SECOND ORDER DIFFERENTIAL EQUATION
Authors: not saved
Abstract:
Let U(t, ) be solution of the Dirichlet problem y''+( t-q(t))y= 0 - 1 t l y(-l)= 0 = y(x), with variabIe t on (-1, x), for fixed x, which satisfies the initial condition U(-1, )=0 , (-1, )=1. In this paper, the asymptotic representation of the corresponding eigenfunctions of the eigen values has been investigated . Furthermore, the leading term of the asymptotic formula for - (x, (x)), (x) and is obtained where (x) is a negative eigenvalue of the Dirichlet problem on [-1, x] with fixed x < 0.
similar resources
On Fuzzy Solution for Exact Second Order Fuzzy Differential Equation
In the present paper, the analytical solution for an exact second order fuzzy initial value problem under generalized Hukuhara differentiability is obtained. First the solution of first order linear fuzzy differential equation under generalized Hukuhara differentiability is investigated using integration factor methods in two cases. The second based on the type of generalized Hukuhara different...
full textA Note on Solving Prandtl's Integro-Differential Equation
A simple method for solving Prandtl's integro-differential equation is proposed based on a new reproducing kernel space. Using a transformation and modifying the traditional reproducing kernel method, the singular term is removed and the analytical representation of the exact solution is obtained in the form of series in the new reproducing kernel space. Compared with known investigations, its ...
full textOn Singular Solutions of a Second Order Differential Equation
In the paper, sufficient conditions are given under which all nontrivial solutions of (g(a(t)y))+r(t)f(y) = 0 are proper where a > 0, r > 0, f(x)x > 0, g(x)x > 0 for x 6= 0 and g is increasing on R. A sufficient condition for the existence of a singular solution of the second kind is given.
full textOn the stability of linear differential equations of second order
The aim of this paper is to investigate the Hyers-Ulam stability of the linear differential equation$$y''(x)+alpha y'(x)+beta y(x)=f(x)$$in general case, where $yin C^2[a,b],$ $fin C[a,b]$ and $-infty
full textPeriodic solutions for a second order nonlinear functional differential equation
The second order nonlinear delay differential equation with periodic coefficients x ′′(t)+ p(t)x ′(t)+ q(t)x(t) = r(t)x ′(t − τ(t))+ f (t, x(t), x(t − τ(t))), t ∈ R is considered in this work. By using Krasnoselskii’s fixed point theorem and the contraction mapping principle, we establish some criteria for the existence and uniqueness of periodic solutions to the delay differential equation. c ...
full textMy Resources
Journal title
volume 10 issue 3
pages -
publication date 1999-09-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023